
FLEXIBLE STATE-DEPENDANT MACHINE SCHEDULING PROBLEMS
USING REINFORCEMENT LEARNING

Carlos D. Paternina-Arboleda
Laboratorio de Robótica y Automatización de la Producción

Universidad del Norte
Barranquilla, Colombia

(cpaterni@uninorte.edu.co)

Abstract

This paper presents a simulation-based optimization methodology called reinforcement learning
(RL) and suggests a neural approach to approximate the values when the systems under study are
complex and involve large-scale decision-making sequential tasks. Computer simulation based
reinforcement learning (RL) methods of stochastic approximation have been proposed in recent
years as viable alternatives for obtaining near optimal policies for large scale MDPs with
considerably less computational effort than that required for DP algorithms. RL does not require
computation of the transition probability and reward matrices, and can handle problems with very
large state spaces since its computational burden is related only to value function estimation.

Keywords: scheduling, simulation, optimization, reinforcement learning.

1. INTRODUCTION

Reinforcement learning (RL) is a way of teaching agents (decision-makers) optimal control
policies. This is accomplished by assigning rewards and punishments for their actions based on the
temporal feedback obtained during active interactions of the learning agents with dynamic systems.
The agent's behavior should choose actions that tend to increase the long run average reward
(Kaelbling et al. [8]). Such an incremental learning procedure specialized for prediction and control
problems was developed by Sutton [14] and is referred to as temporal-difference (TD) methods.

A typical learning model (as depicted in Figure 1) contains 4 elements, which are the environment,
the learning agent, a set of actions, and the environmental response (sensory input). The learning
agent selects an action for the system, which leads the system evolution along a unique path till the
system encounters another decision-making state. At that time, the system consults with the
learning agent for the next action. After a state transition, the learning agent gathers sensory inputs
from the environment, and from it derives information about the new state, immediate reward, and
the time spent during the state-transition. Using this information and the algorithm, the agent
updates its knowledge base and selects the next action. This completes one step in the iteration
process. As this process repeats, the learning agent continues to improve its performance. A
simulation model of the system provides the environment component of the model.

System
Environment

Learning
Agent

response

action

Real or simulated world

Learning algorithm

Figure 1. Typical reinforcement learning scheme

There are two different factors that determine the utility of an action. These are the immediate
reward, and the action value of the state to which a transition occurs as a result of that action. When
a system visits a state, the decision maker chooses an action with the highest (or lowest for
minimization) action value (greedy policy). Initially, the action values for all state-action pairs are
assigned arbitrary equal values (e.g., zeros). When a system visits a state for the first time, and
several other times during the learning phase, the decision maker explores the environment by
taking random actions. As the systems revisits the state, the learning agent selects the action based
on the current action values. As good actions are rewarded and bad actions are punished over time,
for every state, the action values of a smaller subset (one or more) of the actions tend to grow and
other diminish. The learning phase ends when a clear trend appears with one or more actions in
every state being dominant. These actions constitute the decision policy vector. For further
explanation of the working of a reinforcement learning model, refer to Das et al. [4].

Although there are several different types of reinforcement learning models in the open literature,
this study focuses on the implementation of infinite horizon models with the average reward metric.
Following is a brief description of the average reward metric.

2. MATHEMATICAL MODEL

First, we identify the stochastic processes that govern the system, in particular the production and
the demand processes. The reader may notice that the equations for the one-step transition
probability structure are not shown. The system is represented by an (n+1)-dimension vector Θ ,
which is given by:

Θ = {ω, b1, b2, … , bn}, (equation 1)

where ω is the state of the flexible manufacturing station at the decision-making epoch by the agent,
and bi is the buffer level for each product-type at the same decision-making epoch.

The system changes states every time that anyone of the vector components is modified. However,
the object of interest under the semi-Markov assumption is to emphasize those epochs in which a
decision has to be made, in search for a near-optimal sequencing policy for the flexible station. The

decision-making states are only seen after a production completion event or at a new demand arrival
event (if the machine is idle at the time).

After an action is executed by the agent the system reaches state j (decision-making epoch). If Xm is
defined as the system-state at time epoch m and Tm is the time required to reach such epoch then X
follows certain property and it is considered that the process is associated to a Markov chain,

P{Xm+1 = j | X0, … , Xm; T0, … , Tm} = P{Xm+1 = j | Xm; Tm-1 - Tm}, (equation 2)

Furthermore, if Yt indicates the state of the system at time t, then it is obvious that Yt is a semi-
Markov process and the time between the m-th and the (m+1)-th time epochs is a random variable
[12].

In order to measure the agent's development, a cost (reward) structure function is defined as
follows. If the system is run for τ time units under a fixed sequencing policy and Cpi is the reward
obtained after a demand satisfaction event for the i-th product. Csi,j is the set-up cost when the
station switches from product i to product j. Then the average reward function is defined as (with no
handling or backlog costs):

ρ =

− ∑ ∑∑

i j
jiji

i
ii nCsdCp ,,

1
τ

, (equation 3)

where di represents the number of demand entities for the i-th product that were satisfied during τ
time units and ni,j represents the number of times the system switch from product i to product j
during τ time units.

3. AVERAGE REWARD RL

In most manufacturing systems, the optimal total expected reward is finite, either due to the effects
of discounting or because of a reward-free termination state that the system eventually enters. In
many situations, however, discounting is inappropriate and there is no natural reward-free state.
This encourages the search for an optimal average reward per stage starting from stage i, which is
defined by a policy π = (π0, π1, …) by

Rπ(i) = lim N→ ∞ ()()

 =∑

=
+

K

k
kkk iiiirE

N 0
01 |,,

1 π , (equation 4)

assuming that the limit exists, where r(i, a, j) is the reward received by taking action a in state i and
going to state j. The average reward per stage of policy is actually the reward received in the long
term. Hence the rewards received in the early stages do not matter because their contribution to the
average reward per stage is reduced to zero as N → ∞ , i.e.,

lim N→ ∞ ()()

 =∑

=
+

K

k
kkk iiiirE

N 0
01 |,,

1 π = 0, (equation 5)

for any K that is either fixed or is random and has a finite expected value.

4. MODEL-FREE RL

This section discusses the kind of reinforcement learning algorithms that do not require the
assumption of an underlying model to optimize the utility/value function. As with their model-
based counterparts, these methods are iterative procedures that search for an optimal cost-to-go.
Both discounted and average reward methods have been developed, and some have been proven to
have convergence properties (Bertsekas and Tsitsiklis [2], Gosavi [6]).

The model-based RL algorithms estimate the transition probabilities using simulation. Hence, a
strong disadvantage of DP (i.e., the need for computing the transition probabilities) is not avoided in
model-based RL. The algorithms that obviate this need are referred to as model-free algorithms.
Model-free algorithms can infer action values directly from sample paths generated by simulation.
For problems with large state spaces, the action values need to be represented by some standard
function approximator, such as neural networks, multivariate regression analysis, or some other
novel approaches such as kernel regression or wavelet analysis.

Model-free algorithms belong to a class of stochastic iterative algorithms of which an usual
updating scheme for action values can be described as follows. Assume that when an action a is
taken in state i, and it results in an immediate reward of rimm(i, a) and a system transition to state j.
Then, the action value for the state-action pair (i, a) is updated as follows,

Rm+1(i, a) ← (1 - αm) Rm(i, a) + αm{rimm(i, j, a) - ρmτ(i, j, a) +
Ab∈

max Rm(j, b)}, (equation 6)

where αm is the learning rate at decision epoch m, and rimm(i, j, a) - ρmτ(i, j, a) is an estimate of R(i,
a) calculated from the feedback obtained during the system simulation. Q-Learning (Watkins [15]),
and SMART (Das et al. [4]) are examples of model-free RL. In the next section, the relationship
between RL and DP, and RL and stochastic iterative algorithms are discussed in brief. For a more
detailed discussion, the reader is referred to Bertsekas and Tsitsiklis [2].

5. SMART: SEMI-MARKOV AVERAGE REWARD TECHNIQUE

SMART (Das et al. [4]) is the first algorithm that deals with Semi-Markov decision-making
problems. Suppose a system is in state i, and action a is selected, then the system moves to state j.
Let rimm(i, a, j) be the reward generated by going from state i to state j under action a, ρ be the
average reward, and τ(i, a, j) be the time spent during the system transition.

• Step 1. Initialize
Let time step m = 0. Initialize action values Rold(i, a) = Rnew(i, a) = 0, ∀ i ∈ Ε, and a ∈ A.
Choose the current state i arbitrarily. Set the cumulative reward cm = 0, tm = 0, ρm = 0. Choose
initial values of the rates for exploration (pm) and learning (αm).

• Step 2. While m < MaxSteps do

(a) With high probability (1- pm), choose an action a that minimizes Rnew(i, a), otherwise
choose a the other action.

(b) Let the state at the next decision epoch be j, τ(i, j, a) be the transition time due to action a,
and rimm(i, j, a) be the immediate reward earned as a result of taking action a in state i.
Then update the action value for (i, a) as follows:

Rm+1(i, a) ← (1 - αm) Rm(i, a) + αm{rimm(i, j, a) - ρmτ(i, j, a) +
Ab∈

max Rm(j, b)}

(c) In case a nonrandom action was chosen in step 2(a)
1. Update total time: tm ← tm + τ(i, j, a)
2. Update total reward for the agent: cm ← cm + rimm(i, j, a)
3. Update average reward: ρm ← cm/tm

(d) Step 3. Set i ← j, m ← m + 1, decrease αm, and pm.

5.1 Relaxed-SMART

Gosavi [6] demonstrated that for certain conditions, the original version of the SMART algorithm
may not converge. Such conditions are mainly related to the choice of the reinforcement values. If
these values are significantly different, the algorithm actually diverges from the optimal. To avoid
this problem, a set of stochastic approximation equations is introduced in the algorithm. These
equations are known as the Robbins-Monroe stochastic updating scheme,

ρk+1 = (1 – β(k))ρk + β(k)
[]

)1(
),,()(

+
+
kT

euigkT k
iu

kρ . (equation 7)

Relaxed-SMART can be shown to be equivalent to the Bellman equation value iteration. It achieves
asynchronously what the Bellman equation value iteration would achieve in a synchronous fashion.
The value iteration algorithm requires in every iteration the average cost of the current policy. In
Relaxed-SMART an estimate of this quantity is supplied by the value of ρ. The Robbins-Monroe
equation of Relaxed-SMART ensures that the average cost of the policy keeps changing and an
estimate of the current cost can be obtained by ρ.

6. NEED FOR A FUNCTION APPROXIMATION SCHEME

Notice that the updating scheme of the RL algorithms presented before require the storing of action
values R(i, a) for each state-action pair. For a problem with a small state space, the action values
for each state-action pair can possibly be stored. The optimal action to be taken in each state can
therefore be decided based upon which action value is higher (lower for minimization). But a
reasonably sized manufacturing problem, there could be millions of states. This huge state space
makes it infeasible to store all the action values explicitly. Hence there is a need for a function
approximation scheme, which can be used to determine the action values for each state-action pair.

6.1 Neural Networks

Artificial Neural Networks (ANN) provide a general and practical method for learning real-valued
and discrete-valued functions from examples. A Neural Network can be defined as an
interconnected assembly of simple processing elements, units or nodes, whose functionality is
loosely based on the brain neuron (Haykin [7]). A primitive class of ANN consisting of a single
neuron and operating under the assumption of linearity is presented next. This class of network is
known as the Least Mean Square (LMS) algorithm, the delta-rule or the Widrow-Hoff rule. This
algorithm is based on the use of instantaneous estimates of the environment (simulation) response to
the learning agent. The method is very simple and allows for incremental learning, which makes it
perfect for the kind of problems that are solved with the RL methodology. A summary of the LMS
algorithm follows,

• Step 1. Initialization. Set
0)1(ˆ =kw for k = 1, 2, ..., p

• Step 2. Filtering. For time n = 1, 2, ..., compute

y(n) = ∑
=

⋅
p

j
jj nxnw

1

)()(ˆ

e(n) = d(n) – y(n)
)()()()1(ˆ nxnenwnw kkk η+=+ for k = 1, 2, ..., p

where wk(n) are estimates of the neuron weights at time step n, y(n) is the actual output of the
neuron, d(n) is the desired output, e(n) is the error, and η is the learning rate.

The main difficulties encountered with the LMS algorithm may be attributed to the fact that the
learning rate parameter is maintained constant throughout the computation, as shown by η (n) = η0,
for all n. Darken and Moody (1992 [3]) proposed the use of a so-called search-then-converge
schedule, defined by,

η (n) =
)/(1

0

τ
η
n+

, (equation 8)

where η0 and τ are constants. In the early stages of adaptation, the learning rate parameter is
approximately same as the constant η0 and the algorithm mainly explores. As the number of time
steps approaches the constant τ, the algorithm rather converges. For a number of iterations n
sufficiently large compared to the search time constant τ, the learning rate parameter operates as a
traditional stochastic approximation algorithm.

After each action choice in step 2 of the Relaxed-SMART algorithm presented in chapter 4, the
weights of the corresponding action LMS neuron are updated as follows,

∆wx = η(m) α(m) e(m) Xi, (equation 9)

where η(m) is the neuron convergence parameter at decision making epoch m, α(m) is the learning
rate of the Relaxed-SMART algorithm, xi is the variable for which the weights are being updated,
e(n) is the temporal difference error

[rimm(i, j, a) - ρmτ(i, j, a) +
Aa∈

min Rm(j, a, w) – Rm(i, a, w)], (equation 10)

where w is the vector of weights of the neuron.

7. NUMERICAL EXAMPLE

Consider a production system that consists of a flexible manufacturing station with capacity for 3
products. The system has the following operating characteristics during 240,000 time units with a
warm-up period of 9,600 time units:

• Production times Gamma distributed for each product with parameters (n, λ) = (3, 1/8),
• the demand process is Poisson with rate 1/60 for each product,
• earnings for demand satisfaction are 10, 12 and 15 for products 1, 2 and 3 respectively,

• set-up costs are 2, 1.5 and 2 for products 1, 2 and 3 respectively (it does not matter the machine
setting for the previous operation).

Flexible
Station

P1 P2 P3

Demand

Figure 2 A three-product flexible production station

The total state-space for exploration is approximately 15,000 states. The system evolves and is
capable of learning the policy that maximizes the proposed reward function (equation 3). Table 1
shows the results for the optimization problem.

Table 1 Optimization results

Service levelAverage
Reward υ1 υ2 υ3

58.86 0.91 0.91 0.94

Note that the service levels are always higher than 90%. If the optimization problem is constrained
to fulfill at least a pre-determined service level of β (different to 90%), the results would be
different. The reader may refer to Paternina and Das [11] for a more detailed discussion on this kind
of problems.

Figure 3 shows the agent's behavior during the learning phase. Note that at the beginning of the
simulation process, the level of exploration for the agent is higher and it slowly decays until it
finally takes the average reward to converge to the optimum value. For a better explanation of the
Relaxed-SMART behavior and the mathematical convergence proof the reader should refer to
Gosavi [6].

0

10

20

30

40

50

60

70

0 50000 100000 150000 200000 250000 300000

Simulation Step

Figure 3 Computational convergence of the agent for the average reward

8. CONCLUSIONS

The application of artificial intelligence procedures to perform simulation-based optimization
provides a feasible framework for the analysis of complex production systems in order to improve
the operating conditions and, consequently, the productivity of such systems.

The flexibility provided by the off-line optimization analysis allows the implementation of
embedded intelligent agents that are capable of responding to conditions in very dynamic
production settings, such as logistics (supply chain), capacity planning, and demand processes.

The proposed optimization architecture is generic and can be applied to very diverse production
systems that involve dynamic control policies. However, every time a system is modified, it is
recommended to update the control policy through a new learning simulation run.

Even for reinforcement learning procedures, the state-space for large complex systems becomes
prohibitive for a table look-up approach. To overcome this problem, an incremental regression
approach is proposed so as to approximate the values of the payoff matrix. One such approach is the
single-adaptive filter network [7]. This can be better seen in [4, 10 y 11].

The reader is referred to [11] for development of an optimization procedure for a function that
involves handling and backlog costs.

Average reward (ρ)

Exploration and
stabilization phase

REFERENCES

1. J. Abounadi. (1998) Stochastic Approximation for Non-expansive Maps: Applications to Q-
learning Algorithms. Unpublished Ph.D. Thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science.

2. D. P. Bertsekas, and J. N. Tsitsiklis. (1996) Neuro-Dynamic Programming. 1st Edition, Athena
Scientific.

3. C Darken, and J. E. Moody. (1992) Towards Fasters Stochastic Gradient Search. In Advances
in Neural Information Processing Systems 4 (J.E. Moody, S. J. Hanson, and R. P. Lippmann,
eds.), pp. 1009-1016. San Mateo, CA: Morgan Kaufmann.

4. T. K. Das, A. Gosavi, S. Mahadevan, and N. Marchellack. (1999) Solving Semi-Markov
Decision Problems using Average Reward Reinforcement Learning. Management Science, 45,
4, 560-574.

5. T. K. Das, and S. Sarkar. (1999) Optimal Preventive Maintenance in a Production/ Inventory
System. IIE Transactions, 31, 6, 537-551.

6. A. Gosavi. (1999) An Algorithm for Solving Semi-Markov Decision Problems Using
Reinforcement Learning: Convergence Analysis and Numerical Results. Unpublished Ph.D.
Thesis, University of South Florida, Department of Industrial Engineering.

7. S. Haykin. (1994) Neural Networks: A Comprehensive Foundation. McMillan College
Publishing Company, Inc. Englewoods Cliffs, NJ, USA.

8. L. P. Kaelbling, M. L. Littman, and A. W. Moore. (1996) Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research, 4, 237-285.

9. J. Klir, and B. Yuan. (1995) Fuzzy Sets and Fuzzy Logic. Prentice Hall PTR, Prentice Hall, Inc.
NJ, USA.

10. S. Mahadevan, and G. Theochaurus. (1998) Optimizing Production Manufacturing using
Reinforcement Learning. Eleventh International FLAIRS Conference, pp. 372-377, AAAI
Press.

11. C. D. Paternina-Arboleda, and T. K. Das. Intelligent Dynamic Control of Single-Product Serial
Production Lines. To appear, IIE Transactions, Special Issue on Design and Manufacturing.

12. M. L. Putterman. (1994) Markov Decision Processes. Wiley Interscience, New York, USA.

13. R. S. Sutton, and A. G. Barto. (1998) Reinforcement Learning: an Introduction. A Bradford
book. The MIT Press. Cambridge, Massachusetts.

14. R. S. Sutton. (1988) Learning to Predict by the Methods of Temporal Differences. Machine
Learning, 3, 9-44.

15. C. J. Watkins. (1989) Learning from Delayed Rewards. Ph.D. Thesis, Kings College,
Cambridge, England, May.

